Automated Fish Analysis in the Northeast Groundfish Fishery: Building a Library for Image Processing and Machine Learning to Support Electronic Monitoring Programs

Ben Woodward

What Do We Mean by EM?

- Electronic Monitoring (EM) refers to the use of cameras and other sensors to monitor fishing activities
- Increase of the efficiency of fisheries monitoring
 - Reduced cost
 - Increased flexibility for fishers
 - More rapid data transmission
- Can generate large volumes of video data
- Natural fit for machine learning and automated image processing

Need for Means to Increase Efficiency

- Currently video review is the largest component of EM program costs
- Much of this involves simple species identification and length estimate generation
- Video review is an area project partners expect efficiencies can be developed

https://eminformation.com/wp-content/uploads/2019/04/TNC-EM-Cost-Assessment-Report-Submission-to-NEFMC-4 10 19.clean .pdf Cap Logg Group LLC & The Nature Conservancy

Chart 1: % of Annual Costs by Budget Category (Year 3 of Program)

Northeast Fisheries Science Center Trawl

Survey

- Fall: 1963-present
- Spring: 1968-present
- R/V Bigelow: 2018 present
- Continuous sampling of: surface temperature, salinity, pCO2, water column currents (ADCP), fisheries acoustics along survey track
- 20 m depth to shelf edge
- Bottom trawl at ≈350 stations

System Overview

17.5in

Capturing images on the boards

- Crew handling was not modified
- Two people at each station
- One person measuring and dissecting
- Another doing data entry
- Thus, for many individuals the clearest images are coming from the center of the of the board

'on deck' position 1

Tator Online – Collaborative Annotation and Analysis of Image and Video

- Web based platform for video/imagery annotation and analysis
- Open source project supported by CVision, NGS, and NOAA SBIR (https://github.com/cvisionai/tator)
- Customizable metadata, including hierarchical taxonomies (e.g. WORMS, ITIS)

12

≪ ▶ ▶ 0:14 / 0:59

- Automated summary reports
- Custom algorithm pipelines for automated analysis and review within platform
- Used to make contributing material for other image libraries
 - 0 FathomNet – MIT/MBARI/CVision
 - Fishnet.ai TNC 0

4	A	В	С	D	E	F	G	Н	1	J	К	L	М	N	0	р
1	section	media	thumbnai i	id	user	frame	type	x	у	width	height	Notes	Tentative	Taxonom	i Species	MaxN
2	Solomon I	DOEX0015	20150111	7217014	Sarah Bingo	12275	box	0	0	934.5516	244.6917	1			Squalidae	C
3	Solomon I	DOEX0015	20150111	7217018	Sarah Bingo	15926	box	366.0237	12.99248	423.4179	367.0376				Squalidae	C
4	Solomon I	DOEX0015	20150111	7217019	Sarah Bingo	16541	box	538.2064	2.165414	525.2115	404.9323				Squalidae	C
5	Solomon I	DOEX0015	20150111	7217012	Sarah Bingo	9244	box	533.8748	0	210.0846	106.1053				Squalidae	C
6	Solomon I	DOEX0015	20150111	7217017	Sarah Bingo	15731	box	225.2453	0	1038.511	415.7594				Squalidae	C
7	Solomon I	DOEX0015	20150111	7217020	Sarah Bingo	16788	box	136.4467	28.15038	1012.521	395.188				Squalidae	C
8	Solomon I	DOEX0015	20150111	7217011	Sarah Bingo	9244	dot	663.824	58.46617	C	0)			Selachii	C
9	Solomon I	DOEX0015	20150111	7217055	Sarah Bingo	9120	dot	492.7242	470.9774	C	0)			Actinopterygii	C
10	Solomon I	DOEX0015	20150111	7217013	Sarah Bingo	12267	dot	468.9002	85.53383	C	0)			Squalidae	C
11	Solomon I	DOEX0015	20150111	7217010	Sarah Bingo	0	dot	868.5037	55.01976	C	0	seafloor	arrival; han	d bottom	none	C
															a 10.0	

Hierarchy of Video Analysis Automation

Every step in the hierarchy to be automated reduces the review burden on human analysts

High Count Matching

Species Verification Project

- Northeast Fisheries Observer Program (NEFOP) observers required to submit species encountered on fishing operations
 - Fisheries Sampling Branch (FSB) observer programs utilizes this accurate and near real-time data collection for quota and population monitoring
- Species Verification Program (SVP) goals:
 - Ensure high levels of species identification accuracy by verifying submissions of observed species
 - Inform observers about identification issues and improve training methods

Algorithm pipeline

Object Detector Performance

HITIN

MIN σ Ē

Confusion Matrix

Probability CUSK -0.8 -0.6 -0.4 SCUP -0.2

ALEWIFE BUTTERFISH COD, ATLANTIC DORY, BUCKLER (JOHN) FLOUNDER, AMERICAN PLAICE FLOUNDER, FOURSPOT FLOUNDER, SAND DAB (WINDOWPANE) FLOUNDER, SUMMER (FLUKE) FLOUNDER, WINTER (BLACKBACK) FLOUNDER, WITCH (GREY SOLE) FLOUNDER, YELLOWTAIL HADDOCK HAKE, RED (LING) HAKE, SILVER (WHITING) HAKE, SPOTTED HAKE, WHITE HERRING, ATLANTIC HERRING, BLUEBACK KINGFISH, NORTHERN KINGFISH, SOUTHERN MACKEREL, ATLANTIC MACKEREL, ATLANTIC CHUB MENHADEN, ATLANTIC OCEAN POUT POLLOCK RAVEN, SEA RAY, TORPEDO REDFISH, NK (OCEAN PERCH) ROSEFISH, BLACK BELLY SCULPIN, LONGHORN SEA BASS, BLACK SEA ROBIN, NORTHERN SEA ROBIN, STRIPED SHAD, AMERICAN SHAD, HICKORY SKATE, BARNDOOR SKATE, CLEARNOSE SKATE, LITTLE SKATE, ROSETTE SKATE, SMOOTH SKATE, THORNY SKATE, WINTER (BIG) WHITING, BLACK (HAKE, OFFSHORE)

Truth

Tator: Analysis View

Dun Anabes

Frame 20

XkPa

Analysis View: Annotation Gallery

Allow users to quickly see sets of media/localizations associated with specific classification criteria and mark for review if necessary

Examples:

- See localizations of yellowtail flounders
- See species disagreements
- See localizations with confidence < 0.8

Allow admins to see top level algorithm performance analysis results. History of algorithm performance is also necessary

Examples:

- Confusion matrix
- Dataset counts
- Precision/recall graphs

Thank You! – Support From Many Sources Made These Projects A Success

- Henry B. Bigelow crew for support at sea
- **ESB Staff** supported work at sea and FSCS data requests
- Brett Alger, Andy Jones, Glenn Chamberlain, and Chris McGuire contributed ideas and advice
- The FIS and NOP provided funding for this project

From Imagery To Insights <u>www.cvisionai.com</u>