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Motivation

◼ Fisheries are a multi-billion dollar global industry that requires 

management tactics for long-term sustainability. 

◼ Camera systems for monitoring fish abundances become a 

common practice in conservation ecology and stock assessment.
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NOAA Alaska Fishery Science 
Center (AFSC) Cam-Trawl

◼ Combination of trawl and 

a stereo camera system

◼ Allowing fish to pass 

unharmed after sampling
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Ship
Fish

[K. Williams, et al, 2010]



NOAA Southeast Area Monitoring & 
Assessment Program (SEAMAP)
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▪ Since 1992, 45+ million files, 167+ TB of data, with an annual increaseof∼13TB

Gulf of Mexico
Habitat SphereCam



Electronic Monitoring 
of Fishing Activities

◼ Electronic monitoring (EM)

system on federal fisheries

◼ Monitor the fish species and size

◼ Near real-time reporting (via 

satellite), regulation compliance
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Chute-based On-Board Monitoring

Longline Rail-Catch Monitoring



Big Fisheries Data for 
Smart  Ocean 
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Outline

◼ Electronic Visual Monitoring of Fishery

◼ Chute based Electronic Monitoring 

◼ Longline Rail-Catch Electronic Monitoring 

◼ Conclusion



Fish Length Measurement

◼ Many variations of deformations → morphological midline 

Different orientation Curved Forked tail 9



Length Measurement Examples
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Tsung-Wei Huang, et al, IEEE ICASSP 2016 

Mean of Absolute Error of 11 Species of Fishes (3571 samples) – 1.49% 



Fish Counting 
& Length 

Estimation
in Slummy
Conditions

11



Deep Learning based Fish 
Species Identification

◼ Training Data (201 classes, 2015+2016+2019)

◼ 11557 (x150 augmentation)

◼ Testing Data

◼ 1412

Method Accuracy
(201 classes)

BoF (7168-dim) + SVM 89.1%

CNN (Inception ResNet v2) 91.7%

CNN (1536-dim) + SVM 92.9%

CNN

SVM

Input Image

Embedded Feature

Class Label

Class Label
1)

2)



Re-Visit Fish ID Tasks

◼ Datasets

◼ 2015 chute data (8835 images with 27 classes)

◼ 2016 chute data (5032 images with 27 classes)

◼ Same dataset split into training and testing
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Training Data Testing Data Cross Validation Accuracy (%)

2015 2015 10-fold 96.1

2016 2016 10-fold 98.5

2015+2016 2015+2016 10-fold 96.9



Some Problems of 
Supervised Learning

◼ If large (domain or label shifts) difference  between 

training and testing datasets

◼ Slight species variations

◼ Different camera color responses

◼ Different distributions of species
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Fish ID Fish Name

1 Arrowtooth Flounder

2 Atka Mackeral

3 Bathymaster Signatus

4 Berryteuthis Magister

5 Blackspotted Rockfish

6 Dover Sole

7 Dusky Rockfish

8 Flathead Sole

9 Giant Grenadier

10 Gorgonocephalus Eucnemis

11 Harlequin Rockfish

12 Northern Rock Sole

13 Northern Rockfish

14 Pacific Cod

15 Pacific Halibut

16 Pacific Ocean Perch

17 Pacific Octopus

18 Paragorgia Arborea

19 Prowfish

20 Rex Sole

21 Sablefish

22 Shortraker Rockfish

23 Shortspine Thornyhead

24 Strongylocentrotus sp

25 Sturgeon Poacher

26 Walleye Pollock

27 Yellow Irish Lord

Species 

Distributions



Active (Query) Learning 
for Domain Adaptation

◼ Goal: iteratively select informative samples for 

human labeling to improve the classifier performance

◼ 2015 dataset+2016 dataset (5%): 88.1% → 96.8%
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SVM 
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Data

Compute 

Uncertainty

Uncertainty 

Measure

Labeled

Data
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Re-Train 

Classifier 

Choose Query Set (Q) to Label

Modify Uncertainty

Move Query Set 
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Training

Data

Choose Confidence Set (C)

𝑠 𝑥 = max 1 + ෝ𝑤𝑘2
𝑇 x− ෝ𝑤𝑘1

𝑇 x, 0 ∈ [0, 1].   
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Real World Object Recognition
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Imbalanced training 

and novel test data

Long-Tailed Recognition (LTR)

Open-Set Recognition (OSR)



ACE: Ally Complementary 
Experts for LTR
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• Involve multiple specialists’ insights

• Panel discussion to exclude interfering potentials

T𝐶1

TC2

TC𝐾

Distribution-aware 

planner

Exp𝐾

Exp1

Exp2IC2

IC𝐾

Shared 

backbone
Experts

… …

TC: Target categories                           IC:  Interfering categories

Trainin

g

Jiarui Cai, et al., “ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot,” ICCV 2021



Alaska Chute Fish Dataset
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• Alaska species ID dataset: 26.4k images for 87 classes

• Many-shot (>100 samples): 38 classes

• Medium-shot (>20 and <=100 samples): 33 classes

• Few-shot (<= 20 samples): 16 classes

Top1 

acc

Top 2 

acc

Top 3 

acc

Many Medium Few

ACE 94.48% 97.70% 98.39% 98.42% 96.97% 80.00%

• Imbalance factor = 

Nmax/Nmin= 193.5



Active Learning for New 
Classes Discovery

◼ Non-Query Learning

◼ 43-class (42+1 others)

◼ Training, 6042 images

◼ Testing, 698 images

◼ 90% samples used in 

the training.

◼ Accuracy = 94.5%.

▪New Class Discovery

▪From 27 to 42 classes
▪ 5% samples used in 

the training.

▪Accuracy = 93.9%.



Outline

◼ Electronic Visual Monitoring of Fishery

◼ Chute based Electronic Monitoring 

◼ Longline Rail-Catch Electronic Monitoring 

◼ Conclusion



Longline Rail Fishing

21

Fishing Vessel

Stereo camera

Fishing rail

Dynamic sea surface

Fish

◼ Absolute 3D Pose Estimation and Length 

Measurement of Severely Deformed Fish

from Monocular Videos in Rail Fishing

Pacific Halibut



Fish Tracking (Counting) 
and Length Measurement

Jie Mei, et al., “Absolute 3D Pose Estimation and Length Measurement of Severely Deformed Fish from 

Monocular Videos in Longline Fishing,” IEEE ICASSP 2021, Toronto, Ontario, Canada, June 2021
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Z=0 plane is 

image plane

Track based Length Measurement 
from Absolute 3D Pose Estimation

738 fish samples



Rail Fishing Species ID

◼ Choice of feature

◼ Discriminative features

◼ Robust to deformation of fish and viewing angle

◼ Challenges

◼ High visual similarity among fish species

◼ Large within-class variation due to pose and shape changes
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Track-based Species ID

25

▪ Track-based data split for train/evaluation 

Track # Frame #



Hierarchical Species ID
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Level-1 (6 groups)

Level-2 (31 species)



Experimental Results
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Scheme-1: 7 head, w/o multiplication,  Loss1
Scheme-2: 7 head, w/ multiplication, Loss1 
Scheme-3: 7 head, w/ multiplication, Loss2

A: max score from level-1, then max 
score from level-2
B: max score out of 31
C: max score out of 31, but can stop at 
level-1(threshold 0.91)

Ablation study

’video’ : Average confidence score 
among 31 species to pick one predicted 
species for each track. 
’video∗ ’: Majority vote to pick one 

predicted species for each track



Conclusion

◼ Real-time sensing, communication, computing and 

control is being realized everywhere -- smart city, 

smart car, intelligent house, smart manufacturing, etc

◼ Big data allow machine learning and AI to be 

effective and possibly real-time response, thanks to 

powerful communication and computing

◼ Every fishing boat or underwater camera on the ocean 

is an IoT sensor for exploration – big fishery data

◼ From analyzing these big fishery visual data -- a step 

toward Smart Fishery and Smart Ocean
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