Electronic Visual Monitoring of Fisheries for Smart Ocean

Jenq-Neng Hwang, Professor

Department of Electrical & Computer Engineering University of Washington, Seattle WA <u>hwang@uw.edu</u>

EDF AI-Workshop for Fishers, Japan, September 2021

UW & NOAA Electronic Monitoring Innovation Project

Galveston Laboratory

A laboratory of the Southeast Fisheries Science Center.

Motivation

- Fisheries are a multi-billion dollar global industry that requires management tactics for long-term sustainability.
- Camera systems for monitoring fish abundances become a common practice in conservation ecology and stock assessment.

NOAA Alaska Fishery Science Center (AFSC) Cam-Trawl

- Combination of trawl and a stereo camera system
- Allowing fish to pass unharmed after sampling

[K. Williams, et al, 2010]

NOAA Southeast Area Monitoring & Assessment Program (SEAMAP)

Since 1992, 45+ million files, 167+ TB of data, with an annual increase of~13TB

Electronic Monitoring of Fishing Activities

- Electronic monitoring (EM)
 system on federal fisheries
 - Monitor the fish species and size
 - Near real-time reporting (via satellite), regulation compliance

Chute-based On-Board Monitoring

Longline Rail-Catch Monitoring⁶

Big Fisheries Data for Smart Ocean

Outline

- Electronic Visual Monitoring of Fishery
 Chute based Electronic Monitoring
- Longline Rail-Catch Electronic Monitoring
- Conclusion

Fish Length Measurement

• Many variations of deformations \rightarrow morphological midline

Different orientation

Curved

Forked tail

Length Measurement Examples

Mean of Absolute Error of 11 Species of Fishes (3571 samples) – 1.49% Tsung-Wei Huang, et al, IEEE ICASSP 2016 10

Fish Counting & Length Estimation in Slummy Conditions

Deep Learning based Fish Species Identification

- Training Data (201 classes, 2015+2016+2019)
 - 11557 (x150 augmentation)
- Testing Data
 - **1412**

Method	Accuracy (201 classes)
BoF (7168-dim) + SVM	89.1%
CNN (Inception ResNet v2)	91.7%
CNN (1536-dim) + SVM	92.9%

Re-Visit Fish ID Tasks

- Datasets
 - 2015 chute data (8835 images with 27 classes)
 - 2016 chute data (5032 images with 27 classes)
- Same dataset split into training and testing

Training Data	Testing Data		Cross Validation	Accura	Accuracy (%)	
2015	2015		10-fold	96.1		
2016	2016		10-fold	98.5		
2015+2016	2015+2016		10-fold	96.9		
Training Data Tex		Testing I	Data	Acc (%)	Acc (%)	
2015 dataset (5%)		2015 dat	aset (95%)	83.9		
2016 dataset (5%) 2016 dat		aset (95%)	86.6			
2015 dataset (100%) 2016 dat		aset (100%)	69.5			
2015 dataset+2016 dataset (5%) 2016		2016 dat	aset (95%)	88.1		

Some Problems of Supervised Learning

 If large (domain or label shifts) difference between training and testing datasets
 Fish ID Fish Name

> 9 10

- Slight species variations
- Different camera color responses
- Different distributions of species

D	Fish Name	
	Arrowtooth Flounder	
	Atka Mackeral	
	Bathymaster Signatus	
	Berryteuthis Magister	
	Blackspotted Rockfish	
	Dover Sole	
	Dusky Rockfish	
	Flathead Sole	
	Giant Grenadier	
	Gorgonocephalus Eucnemis	
	Harlequin Rockfish	
	Northern Rock Sole	
	Northern Rockfish	
	Pacific Cod	
	Pacific Halibut	
	Pacific Ocean Perch	
	Pacific Octopus	
	Paragorgia Arborea	
	Prowfish	
	Rex Sole	
	Sablefish	
	Shortraker Rockfish	
	Shortspine Thornyhead	
	Strongylocentrotus sp	
	Sturgeon Poacher	
	Walleye Pollock	
	Yellow Irish Lord	1 <i>1</i>
		14

Active (Query) Learning for Domain Adaptation

 Goal: iteratively select informative samples for human labeling to improve the classifier performance

Choose Query Set (Q) to Label

■ 2015 dataset+2016 dataset (5%): 88.1% → 96.8%

Real World Object Recognition

ACE: Ally Complementary Experts for LTR

- Involve multiple specialists' insights
- Panel discussion to exclude interfering potentials

Jiarui Cai, et al., "ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot," ICCV 2021

Alaska Chute Fish Dataset

- Alaska species ID dataset: 26.4k images for 87 classes
- Many-shot (>100 samples): 38 classes
- Medium-shot (>20 and <=100 samples): 33 classes
- Few-shot (<= 20 samples): 16 classes

Active Learning for New Classes Discovery

- Non-Query Learning
- 43-class (42+1 others)
 - Training, 6042 images
 - Testing, 698 images
 - 90% samples used in the training.
 - Accuracy = 94.5%.

- New Class Discovery
- From 27 to 42 classes
 - 5% samples used in the training.

Outline

- Electronic Visual Monitoring of Fishery
- Chute based Electronic Monitoring
- Longline Rail-Catch Electronic Monitoring
- Conclusion

Longline Rail Fishing

 Absolute 3D Pose Estimation and Length Measurement of Severely Deformed Fish from Monocular Videos in Rail Fishing

Fish Tracking (Counting) and Length Measurement

Jie Mei, et al., "Absolute 3D Pose Estimation and Length Measurement of Severely Deformed Fish from Monocular Videos in Longline Fishing," IEEE ICASSP 2021, Toronto, Ontario, Canada, June 2021

Track based Length Measurement from Absolute 3D Pose Estimation

Rail Fishing Species ID

- Choice of feature
 - **Discriminative** features
 - **Robust to deformation** of fish and viewing angle
- Challenges
 - High visual similarity among fish species
 - Large within-class variation due to pose and shape changes

Pacific Halibut

Hard Snout Skates

Soft Snout Skates

Arrowtooth Flounder

Track-based Species ID

Track-based data split for train/evaluation

Hierarchical Species ID

Experimental Results

	Model	Unit	Level-1	Level-2 A	Level-2 B	Level-2 C
Ablation study –	Baseline	img	-	-	78.3	-
	_	img	86.3	77.4	77.4	82.0(8567, 27393)
	Scheme-1	$video^*$	93.2	86.5	86.6	93.2(298, 319)
		video	93.4	86.5	86.8	93.4(293, 324)
	Scheme-2	img	88.4	79.9	80.0	84.6(8660, 27300)
		$video^*$	94.3	88.6	88.9	94.3(329, 288)
		video	94.9	88.9	88.8	94.9(328, 289)
	Scheme-3	img	91.0	82.3	82.3	86.3(5830, 30130)
		$video^*$	96.3	90.6	90.3	96.3(286, 331)
		video	96.4	90.9	90.9	96.4 (293,324)

Scheme-1: 7 head, w/o multiplication, Loss1 Scheme-2: 7 head, w/ multiplication, Loss1 Scheme-3: 7 head, w/ multiplication, Loss2 'video' : Average confidence score among 31 species to pick one predicted species for each track. 'video* ': Majority vote to pick one predicted species for each track A: max score from level-1, then max score from level-2 B: max score out of 31 C: max score out of 31, but can stop at level-1(threshold 0.91)

Conclusion

- Real-time sensing, communication, computing and control is being realized everywhere -- smart city, smart car, intelligent house, smart manufacturing, etc
- Big data allow machine learning and AI to be effective and possibly real-time response, thanks to powerful communication and computing
- Every fishing boat or underwater camera on the ocean is an IoT sensor for exploration – big fishery data
- From analyzing these big fishery visual data -- a step toward Smart Fishery and Smart Ocean